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Abstract 
In this paper, we are interested to segment splicing hot (infra-red) images using active 

contours in order to extract defects for the fiber splicing process on fiber splicer machine. The 
segmentation is assured by using a hybrid edge and region active contour; where region in-
formation uses local statistics to solve the problem of highlight or intensity inhomogeneity, 
whereas edge information based on Local Binary Patterns LBP, smoothes homogeneous re-
gions and enhance contour information. Experimental results on hot images captured from 
the fiber splicer machine illustrate the effective performance of the proposed method. 
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1. Introduction 
Recently, fiber optic transmission has become one of the most popular choices for long-
distance fixed communication links due to its technology that provides a higher capacity data 
transfer at extremely high speeds. In many situations splicing often is required to connect the 
separated ends of fiber together to create a continuous optical path for transmission of optical 
signal from one fiber length to another. One of the basic fiber interconnection methods is fu-
sion splicing by a Fiber Splicing Machine (FSM). As shown in Fig. 1, a fiber is made up of the 
core and the cladding those will be spliced, and the buffer that will be removed during the 
stripping, when splicing the fibers. However, to maintain high quality transmission, a good 
splice with low loss is required [1]. 
The splice loss is a power metric of the input and the output light across the fiber that can be 
estimated directly from the splicer machine. However, engineers usually prefer the use of the 
Optical Time Domain Reflectometer (OTDR) to measure the splice loss rather than using the 
evaluation result of the FSM. This is because the output of the splicer is only an approximate 
estimation [2]. For that, in this work, we propose to use image processing for the segmenta-
tion of splicing defects from the digital images captured from the splicer machine. 
Many research works have been published in the field of defect segmentation. In the field of 
radiographic weld defects image segmentation, traditional techniques have been proposed 
such as thresholding and morphological approaches [3-5]. Recently, optimization techniques 
are introduced which tries to segment images by optimizing some criterion [6-8]. Active Con-
tours [9-18] are the most popular techniques in this category where the idea is to drive an ini-
tial curve inside the image domain to be segmented to reach the boundaries of the objects of 
interest by minimizing energy where the curve is the argument of this energy [19]. Generally, 
active contours can be classified into edge-based models relying on contour information [9-
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11], region based models relying either on global or local image statistics [12-15] and hybrid 
models combining all information [16-18]. 
 

 
Fig. 1. Profile of the fiber. 

 
Over the past few years, modern approaches based on convolutional neural networks (CNNs) 
[20-22] have yielded a new generation of image segmentation models with remarkable per-
formance improvements. Image segmentation can be formulated as a classification problem 
of pixels with semantic labels (semantic segmentation) or partitioning of individual objects 
(instance segmentation). Semantic segmentation performs pixel-level labeling with a set of 
object categories (e.g., human, car, tree, sky) for all image pixels, thus it is generally a harder 
undertaking than image classification, which predicts a single label for the entire image [23].  
In the field of fiber splicing defect segmentation, to our knowledge, there is no literature stud-
ied this problem except the work of Liu et al. [2,24] where the authors proposed to utilize 
both the Gaussian Mixture Model (GMM) and the Graph Cut Model (GCM) to solve the defect 
segmentation problem of the hot image on the splicer machine. The GMM is used to restrain 
the highlight of the defect images caused by LED lamp when collecting the image data during 
the splicing process by the machine camera. Then the GCM is employed to segment the defect 
region [24]. 
Although the GMM is a good solution for the highlight or intensity inhomogeneity phenome-
non, however the standard GMM parameters are just estimated by some selected normal 
mode image whose image qualities are good; this makes not all the segmented region can be 
regarded as serious defects which will influence the final splicing effect [2]. In addition, Ex-
pectation Maximization (EM) algorithm used to estimate the GMM parameters is complex 
and unable in implementation for real-time applications [25]. 
 In this work, in order to solve both the problem of highlight or intensity inhomogeneity and 
defect segmentation simultaneously, we combine the hybrid active contour proposed in [18] 
that uses local region information with the edge detection method based Local Binary Pat-
terns (LBP) proposed in [11,26] in a single model. Local region information is an effective way 
to deal with intensity inhomogeneity or highlight problem, whereas edge information based 
on LBP, smoothes homogeneous regions and enhance contour information. 
The rest of this paper is organized as follow:  in section 2, the fiber splicing process vision sys-
tem is discussed with its diagram. Section 3 reviews related segmentation methods. Section 4 
describes the proposed model. Experimental results on hot images are the objective of Sec-
tion 5. Finally, Section 6 concludes the paper. 



2. Fiber splicing machine vision system 

2.1. Fiber splicing process 

The working diagram of the splicer machine is shown in Fig. 2. Its structure includes three 
parts: the fiber splicing system, the lamps and cameras system. When this splicing system 
works, first the fiber splicing component will heat the two fibers by current constantly. Sec-
ond the two cameras fixed in the vertical and the horizontal directions of spliced fibers will 
capture two types of images; the visible image in the beginning and at the end of 
the splicing process, and the hot images during the entire splicing process. To improve the 
imaging definition of hot image, two lamps fixed in the opposite sides of cameras will cast 
rays into the fibers surfaces. Third, the two cameras will capture and send splicing images as 
live video displayed on the machine monitor (screen) [2]. 
 

 
Fig. 2. The working diagram of the fiber splicing process. 

2.2. Fiber splicing machine image analysis 

As we discussed above, the visible images captured from the two cameras are used in two 
stages; the first one is in the beginning of splicing process before heating the fibers, where the 
visible images are treated by the fiber splicer machine control unit. This first processing 
aimed at aligning and pushing fibers to be closed to each other via the left and the right mo-
tors as shown in Fig. 2.  
The second one is at the end of the splicing process where visible images treated by the ma-
chine control unit are used in order to detect typical splicing defects namely: bubbles, line, 
thin fiber, fat fiber, and separated fibers. In addition to other defects at the first stage (in the 
beginning) which are large cleave angle and fibers cores mismatch.  Fig. 3 shows some sam-
ples of visible images for both normal (a-b) and abnormal mode (c-h). It is certainly that the 
fiber splicer machine control unit treats visible images in order to align fibers and detect 
splicing abnormality using line detection technique; more specifically the Hough line detec-
tion. 
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Fig. 3.Splicing samples of the visible fiber image: normal mode; a) in the beginning, b) at the 
end. Defect mode; c) large cleave angle, d) bubble, e) line, f) thin fiber, g) fat fiber,  

h) separated fibers. 
 
Fig.4 shows two image samples of normal mode (in the beginning and at the end of splicing 
process) and the line detection demands of the visible image. Six lines can be detected from 
the visible image of beginning; four horizontal with the aim of aligning fibers and detecting 
cores mismatch defect, and two vertical to compute cleave angles. For the visible image at the 
end of the splicing process, four horizontal lines are responsible to detect other defects de-
scribed above. Hence, for the image in abnormal mode, the number of line detection result 
may be large than six (in the beginning) or four (at the end).  
Moreover, the fiber splicer machine can estimate the splice loss which is a power metric of the 
input and the output light across the fiber. As the graph in Fig. 5 shows, the vast majority of 
splices were below 0.05 dB, but there were several above that, as well as a few above 0.10 dB. 
It should also be noted that splice studies performed in a lab, like those referenced in the 
graph, are usually done in ideal and relaxed conditions with state-of-the-art, well-maintained 
splicing equipment and cleavers. In reality, splicing is often done in haste, and in less than 
ideal conditions (cold, windy, dusty/dirty, etc.) with equipment that may be well used and not 
perform at its very best. Losses even greater than those seen in the splice studies here can be 
expected in field conditions.  
Besides that, as shown in Fig. 6, a sample visible image with a good splice loss estimated by 
the fiber splicing machine but its corresponding hot (infra red) image looks poor by visual in-
spection. This refers that Denoising technique employed as preprocessing step before line de-
tection may removes possibly important edge information of defect region [11]. By consider-
ing similar cases, we propose to use the data processing terminal and the splicing machine 
software to capture hot (infra red) images those will be processed for the purposes of splicing 
defect segmentation. 
 

  
Fig. 4. Demonstration of line detection demands on normal mode samples. 

 



 
Fig. 5. Estimated Splice loss histogram. 

 

  

  
Fig. 6. The visible image samples and its corresponding hot image of the spliced fiber:  

(first row: defect sample. Second row: normal sample). 
 

3. Related works 

3.1. CNN based models  
CNNs are among the most successful and widely used architectures in computer vision tasks, 
especially for image segmentation. A typical CNN, illustrated in Fig. 7, has a hierarchical 
structure and is composed of three type of layers to learn representations of data with multi-
ple levels of abstraction [27]: i) convolutional layers, where a kernel (or filter) of weights is 
convolved in order to extract features; ii) nonlinear layers, which apply an activation function 
on feature maps (usually element-wise) in order to enable the modeling of non-linear func-
tions by the network; and iii) pooling layers, which replace a small neighborhood of a feature 
map with some statistical information (mean, max, etc.) about the neighborhood and reduce 
spatial resolution [23]. Some of the most well-known CNN architectures include: UNet [20] 
and HRNet [22]. 
 



 
Fig. 7. Illustration of three operations that are repeatedly applied by a typical CNN:  

convolution with a number of linear filters; Nonlinearities (e.g. ReLU); and local pooling  
(e.g. max pooling) [27]. 

 
 The UNet [20] architecture is proposed by taking the idea of the fully convolutional neural 
network (fCNN) [28]. The fCNN includes only convolutional layers, which enables it to take 
an image of arbitrary size and produce a segmentation map of the same size. The CNN archi-
tecture is modified by replacing all fully-connected layers with the fully-convolutional layers. 
As a result, the model outputs a spatial segmentation map instead of classification scores 
[23]. 
 Authors in [20] took the idea of the fCNN one step further and proposed the UNet architec-
ture, comprising a ’regular’ fCNN followed by an up-sampling part where ’up’-convolutions 
are used to increase the image size, coined contractive and expansive paths [29]. 
Another popular model is the recently developed segmentation network, high-resolution net-
work (HRNet) [22] as shown in Fig. 8. 
 Other than recovering high resolution representations as done in U-Net, HRNet maintains 
high-resolution representations through the encoding process by connecting the high-to-low 
resolution convolution streams in parallel, and repeatedly exchanging the information across 
resolutions [23]. 
The majority of CNNs based image segmentation research has focused on 2D Datasets which 
can be used for evaluating model performance. 

3.2. The GMM_GCM model 

Since the process of fiber splicing is accomplished in a dark environment, the LED lamp will 
cause a highlight region in the center of the fiber; so the image quality of the hot image (i.e. 
the contrast) is always low. Thus, in order to improve the image contrast, Liu et al [2,24] pro-
posed to use the Gaussian Mixture Model GMM to estimate the illumination distribution. 
GMM is used to express the histogram as a sum of Gaussians using the Expectation Maximi-
zation (EM) algorithm. The GMM modeling of the histogram results in a number of Gaussi-
ans with each Gaussian being characterized by its mean, standard deviation and weight. The 
GMM model can be written as follow [30]: 
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where k is the number of Gaussians, wi is the weight assigned to the ith Gaussian, Ni repre-
sents the normalized ith Gaussian, and µi, σi represents the mean and standard deviation of ith 
Gaussian.  
When computing the GMM in this approach, firstly, its parameters are estimated by some se-
lected normal mode image whose image qualities are good. Then the original image histo-
gram is transferred into the log space by (2). The EM algorithm is used to estimate the GMM 
components of the image data in log space. Then, a kind of histogram transfer is given by (3). 
 

 
Fig. 8. Illustrating the HRNet architecture. It consists of parallel high-to-low resolution con-
volution streams with repeated information exchange across multi-resolution steams. There 

are four stages. The 1st stage consists of high-resolution convolutions. The 2nd (3rd, 4th) 
stage repeats two-resolution (three-resolution, four-resolution) blocks [22]. 
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where I and I′ are the image intensities in the log space. Ymax and Ymin represent the maxi-
mum and minimum luminance values of the log space of the image. μi′ and μi are the means 
of GMM of the original image and that of the processed image respectively. σi is the variance 
of the GMM of the original image. h′ and h are the histogram values of the original and com-
puted images. αi is a control constant which decides the degree of contrast adjustment. β is 
also a control parameter of the histogram transfer [24]. 
After enhancing the contrast of hot image, the Graph Cut Model GCM [31] is used to segment 
defect region. The classic design method given by (4) employs the data dependent item (E1) 
and the smoothness item (E2). The data dependent item describes the cost of similarity be-
tween source (foreground) and sinking (background) vertexes; while the smoothness item 
calculates the cost of non-continuity among neighboring image pixels. 
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where the E1 can be defined by Table I and (5). In Table I, symbol C is a constant which is set 
by experiences. The E2 can be estimated by (6). 
 
 



Table 1: Design of the E1 energy function of GCM 
Type of Edge Weight Vertex Value 
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where Ii is the gray of pixel. Symbol xi equals 1 or 0, which means the pixel belongs to fore-
ground or background. Symbols μ and σ are the means and the variances. Subscripts “F” and 
“B” represent the foreground and the background. Symbol σn is the image noise. Symbol 
dist(p, q) is a distance metric. 
Although GCM is one of the best choices for solving the image segmentation problem because 
of its good performance and high speed, however since the standard GMM parameters are 
just estimated by some selected normal mode image whose image qualities are good, and the 
contrast enhancement is related to some parameters (we refer here to control parameters αi 
and β in (3)); this makes not all the segmented region by GCM can be regarded as serious de-
fects which will influence the final splicing effect. In addition, this approach employs the re-
sults of the region based flood fill method [32] segmentation as an initial segmentation of the 
GCM, and this may affect the final result. Moreover, the GCM cannot outperform other 
methods distinctly such as the active contour for some complex segmentation problems just 
because of its limit constraint ability (refers to E1 and E2 functions in (4)) [2]. 

3.3. The RSF_LoG active contour 
It had been known that region-based Active Contours using local image statistics can deal ef-
fectively with highlight or intensity inhomogeneity problem, but they are found to act locally 
and to be easy to trap into local minima. To overcome these problems, the authors proposed 
in [18] a model that combines an optimized Laplacian of Gaussian (LoG) term which can 
smooth the homogeneous regions and enhance edge information and the Region-Scalable Fit-
ting (RSF) term proposed in [13] which make use of local region information to drive the 
curve towards the boundaries. The total energy function can be defined as: 

)(),,( 21  OLRSFRSFSL EffEE   
(7) 

where Ф is the level set function,  f1 , f2 are the interior, exterior local means, respectively giv-
ing in (9) and ERSF (Ф, f1 , f2) is the RSF energy  defined in [13] as: 
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EOL(Ф) is the optimized LoG energy defined as follow: 
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The parameters ω, ν and μ are the weight coefficients of each term. L and P are regularizers 
[10], H(Ф) and  δ(Ф) are the Heaviside and the Dirac function, respectively The LΔ(Ф) is op-
timized LoG term, where L(x, y) is obtained by solving: 
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where L represents the value of optimized LoG of image, and g(∇I ) = e−α∇Gσ*I , α, β are posi-
tive constants. g(∇I ) is an edge indictor function. The values of g(∇I) are small and approxi-
mately equal to 0 at the locations near the object boundaries, whereas,  these values large and 

approximately equal to 1 in the homogeneous regions. (L0)2 is the data fitting term that 
measures the proximity between the optimized LoG and zero plane. When energy is descend-

ing, the term g(∇I )× (L0)2 will drive L close to 0 in the homogeneous regions. Thus, it is 
helpful to smooth the homogeneous regions. Similarly, (L−β×Δ(Gσ*I ))2 is the data fitting 
term that measures the proximity between the optimized LoG and the original LoG of image. 
The term (1− g(∇I))×(L−β×Δ(Gσ*I))2 will drive L close to Δ(Gσ*I) at the locations near the ob-
ject boundaries. Thus, it can preserve the object edges when β is equal to 1. And when β is 
larger than 1, it can enhance the object edges [18]. By minimizing the energy in (11), the fol-
lowing Euler-Lagrange equation can be obtained: 
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Using the steepest descent method to minimize the above energy functional in (7), the follow-
ing gradient flow equation can be obtained: 
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where e1(x) and e2(x) are defined as follow [18]:  
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Combining edge and local region information improves the performance of active contour 
model, however the core element of edge information (i.e. the edge indicator function g(∇I)) 
has two major drawbacks: In practice, the discrete gradients are bounded and then, the func-
tion g can be relatively far from zero on the edges and the curve may pass through the bound-
aries. The next issue is that for the noisy or textured regions, the image will have gradient 
maxima which induce local minima in the external energy. Therefore, the curve will not stop 
at the real object’s boundaries. Alternatively, the Gaussian smoothing is used to remove spu-
rious local minima. Yet, smoothing also removes possibly important edge information if the 
kernel width σ is not chosen appropriately [11]. 

4. The proposed model 
Our objective is to develop a model which is able to restrain highlight and to segment defects 
in hot images at the same stage with high accuracy. Different to the work proposed in [2,24] 
where the two previous stages (highlight restraint and segmentation) are separated, we have 
used a hybrid Active Contour based on the RSF-LoG model [18]. In addition, we substitute 
the edge indicator function based gradient information in (11) with a new one based on Local 
Binary Pattern LBP Proposed in [11,26] with the aim of overcoming edge leakage problem 
met with classical edge indicator based gradient information. 
The LBP [33] operator has been applied in many active studies such as texture classification 
and face recognition [34]. The LBP operator combines characteristics of statistics and struc-
tural texture analysis; it describes the texture with primitives called textons [11].  
The derivation of an LBP code is shown in Fig. 9a; taking a neighborhood of 3×3 of a central 
pixel, thresholding it into two levels “0” or “1” whether the neighbor of that pixel has smaller 
or larger value than the central pixel, respectively. An LBP code is obtained by multiplying the 
threshold values of eight pixels by binomial weights and summing up the result. Different tex-
ture primitives can be detected by the LBP code, Fig. 9b shows examples where ones and ze-
ros are indicated with white and black circles respectively. A special kind of LBP, which will 
be used for edge detection, is called rotation-invariant uniform LBP where the number of 
bitwise 0/1 and 1/0 transitions in an LBP is only two or less. Nine classes of the uniform LBP 
are shown in Fig. 9c. 
The new edge indicator function base LBP is resulting from the Canny edge detection with 
modified steps as follow [11]: 
In the first step, unlike in Canny’s algorithm where noise is suppressed by smoothing with 
Gaussian kernel, in this approach, a filter is generated which rejects pixel positions of LBPs 
which are likely to be produced by noise and accept the rest of classes; this classification is 
based on the work proposed in [26], where for some example images with different levels and 
types of artificial noise, LBP codes have been calculated and accumulated in LBP histograms. 
Each histogram has ten bins: nine for the uniform classes, and one for all other LBPs. From 
Fig. 10, it can be seen that the number of edges of different orientations (classes 2 to 6) de-
creases when the noise level increases while other LBPs (classes 0, 1, 7, 8 and 9) are much af-
fected by noise. 
 



 
Fig. 9.Calculation, interpretation and uniform classes of LBPs. 

 

 
Fig. 10. LBP histogram for image “Lena” with different noise levels [26]. 

 
In the second step, gradient magnitudes in this approach are calculated at the accepted pixel 
positions using the local variance to increase the robustness against noise: 
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where r is the variation of the radius R to calculate several LBPs and summed up for the gra-
dient magnitude in order to increase the robustness against noise, P is the number of neigh-
bours and gp are the gray values of surrounding pixels. Variance tends to focus too much on 
bright objects. So, standard-deviation is used instead of variance as it produces more homo-
geneous edge images. 
In the third step, as in Canny’s algorithm, four discretized gradient orientations: 0°, 45°, 90°, 
and 135° are used. While these orientations are calculated using the atan2 function in Canny, 
this approach doesn’t need to calculate anything in order to get the orientation. Instead, four 
sets: D0°

LBP, D45°
LBP, D90°

LBP and D135°
LBP of LBP that represent the orientations are simply de-

fined. Each set D consists of 16 LBP as shown in Fig. 11. 



 

 
Fig. 11. The four sets with LBPs of different orientations [11]. 

 
The final step is to generate a binary edge pixel image B using the hysteresis operator, in 
which pixels are marked as either edges, non edges and in-between, this is done based on two 
thresholds t1 and t2 with t1 < t2. If a gradient magnitude exceeds t2, it is accepted as edge pixel, 
while all pixels with gradient value less than t1 are marked as non edges. The next step is to 
consider each of the pixels that are in-between, if they are connected to edge pixels these are 
marked as edge pixels as well. The result of this edge detector is the binary image B in which 
the white pixels closely approximate the true edges of the original image. 
The new edge indicator function based LBP is given by: 

,1  BgLBP   (16) 

The function gLBP presents the advantage that is made such as it is zero on edges whereas it is 
equal to one on flat and noisy regions and then, accordingly, the active contour will keep 
evolving in flat and noisy regions till it reaches the object boundaries [11].  
Substituting the edge indicator g in (12) with the new one based LBP gLBP, the total energy 
function given in (13) becomes: 
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where LBPL is the new optimized LoG based LBP. 

5. Experimental results 
In this section, in order to validate the performance of the proposed model, we apply and 
compare it with the original RSF-LoG model [18] and the GMM_GCM model [24] using three 
defect samples of hot images extracted from the splicer machine.  
This study does not contain comparison with CNN based models including UNet [20] and 
HRNet [22] since such models require Image Dataset for evaluation. 
All models are implemented using Matlab 9.5 in Windows 7; on 3.3 GHz Intel core i3 PC with 
4GB of RAM. 
Unless otherwise specified, we use the common parameters in the RSF_LoG [18] and the 
proposed model: σ=1, μ=2, υ=0.006×2552, ω=15, λ1=λ2=1 and time step Δt=0.1. In the pro-
cess of optimizing LoG, the parameters σ=1, α=0.01, β=5, Δt=0.01 and the number of itera-
tions is 250. For the edge detection method based LBP of the proposed model, the number of 
neighbors P = 8, LBP radius R = 1 and threshold parameters t1 and t2 are determined empiri-
cally according to images. For the GMM_GCM method [2], the component number of GMM 
w=3, the termination condition of the EM algorithm is set to 0.001 and the GCM result is get-
ting from the Matlab Image Segmenter App. 
Fig. 12 shows the comparison results where the first row shows the original hot images, imag-
es in second row are the ground truths of the defect segmentation validated by an expert, 



third row shows the results of the GMM_GCM model, images in fourth row are the results of 
original RSF-LoG model, while last row presents the results of the proposed model. 
 

 
Fig. 12. Evaluation of segmentation results: first row: Original hot images. Second row: the 
ground truths of the defect segmentation. Third row: the results of the GMM_GCM model. 

Fourth row: the results of the original RSF-LoG model. Last row:  
the results of the proposed model 

 
The Dice coefficient [35] is used to compare and measure the segmentation accuracy. The 
Dice index D∈[0,1] between the obtained segmentation result Rr and the ground truth Rg is 

given by: 
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 . A higher Dice value (close to 1) indicates better segmentation 

performance. From the quantitative performance measure showed in Table 2, the proposed 
model shows excellent results with almost highest score of Dice index. 
In particular, comparing the GMM_GCM model to the proposed model; refer to image of 
second column of Fig. 12 and its corresponding Dice value, the GMM works well in enhancing 



image contrast and restrain highlight (i.e. Intensity inhomogeneity). More specifically, Fig. 13 
shows the original image histogram and the enhancing histogram after contrast enhancing 
using GMM. Since the defect region should be accentuated while the highlight region should 
be restrain, the GMM components in the right side can be weakened.  However, the Estima-
tion of GMM parameters play an important role and may affect segmentation accuracy by 
considering some intensities of background as parts of foreground or vice versa, and this is 
the case with the first and last column of Fig .12, where the proposed model outperforms the 
GMM_GCM model in term of segmentation accuracy. 
Here the proposed model also outperforms the ACM_LoG due to the use of LBP edge detec-
tion method rather than the classical edge indicator function g; where no smoothing is neces-
sary for the gLBP, while the function g(∇I ) = e−α∇G

σ
*I deals with the problem that smoothing 

with big filter size can suppress important edges and the curve will pass through them, but 
small filter size may not be sufficient to remove noise and then, the curve will stop evolving 
before reaching the real object boundaries. For more comparison, a visualized gLBP image of 
the sample image in the second column of Fig. 12 is contrasted with the classical g image as 
shown in Fig. 14. Contrary to the edge indicator function g, it is clearly seen that the gLBP can 
accurately distinguish the object boundaries. 
 
Table 2: Values of the Dice index (D) of the different models used in the study. 
Image/ Models ACM LoG ACM_LoG LBP GMM_GCM 

Image of first column 0.7318 0.8067 0.8040 

Image of second column 0.8632 0.8770 0.90 

Image of third column 0.6648 0.7076 0.4162 

 

  

Fig. 13. Original histogram (left) and GMM histogram (right) of the image sample. 
 

  
Fig. 14. The visualized classical edge function g (left) and LBP edge function  

gLBP (right) of a sample image. 



6. Conclusions 
In this paper, we propose a fiber splicing defect segmentation method for fiber splicer ma-
chine. We have used a hybrid edge and region active contour to achieve the highlight restraint 
and segmentation of defects at the same stage. In addition, a new edge indicator function 
based LBP is introduced with the aim of enhancing contour information. Experimental re-
sults demonstrate the potential of the proposed method in terms of segmentation accuracy. 
Future work will be devoted to build a feature dataset for splicing defect and extend the work 
based on CNN models. 

Acknowledgments 
The authors would like to thank all staff of CMSO (Centre Maintenance Support Optique) Al-
gérie Telecom Biskra, for their help, their valuable comments concerning the fiber splicer ma-
chine. Authors would also like to thank Dr. ABDOLI Mohsen for helping us in implementing 
the GMM contrast enhancement method. 

References 
6. Meitzler, J.L., Rodriguez, M., Pradhan, S.K., Garren, J., Johnson, J., Watanabe, T., Mies, 

E. Is That Splice Really Good Enough? Improving Fiber Optic Splice Loss Measurement, 
2003. 

7. Liu, H., Wang, W., Gao, F., Li, J.,  Chen, K. Surface splicing defect analysis and applica-
tion of polarization maintaining fiber using graph cut with illumination priors // Infrared 
Physics & Technology, Vol. 66, 2014, pp. 125-135.  

8. Mahmoudi, A., Regragui, F.  Welding defect detection by segmentation of radiographic 
images // In 2009 WRI World Congress on Computer Science and Information Engineer-
ing, Vol. 7, 2009, pp. 111-115. IEEE. 

9. Yazid, H., Arof, H., Yazid, H. Automated thresholding in radiographic image for welded 
joints // Nondestructive Testing and Evaluation, Vol.  27,  № 1, 2012, pp.  69-80. 

10. Anand, R. S., Kumar, P. Flaw detection in radiographic weld images using morphological 
approach // NDT & E International, Vol.  39,  № 1, 2006, pp. 29-33. 

11. Boutiche, Y. Local Segmentation via an Implicit Region-Based Deformable Model Applied 
To Weld Defects Extraction // International Journal of Computer and Information Tech-
nology, Vol.  2,  № 4, 2013, pp. 815-820. 

12. Boutiche, Y., Halimi, M. Automatic Detection and Features Computation of Weld Defects 
for Radiographic Inspection // In International Conference on NDT and Materials Indus-
try and Alloys (IC-WNDT-MI'14), 2014. 

13. Boutiche, Y.. Fast Level Set Algorithm for Extraction and Evaluation of Weld Defects in 
Radiographic Images // In Artificial Intelligence and Computer Vision, 2017, pp. 51-68. 
Springer, Cham. 

14. Caselles, V., Kimmel, R.,  Sapiro, G. Geodesic active contours // International journal of 
computer vision, Vol. 22, № 1, 1997, pp. 61-79. 

15. Li, C., Xu, C., Gui, C.,  Fox, M. D. Distance regularized level set evolution and its applica-
tion to image segmentation // IEEE transactions on image processing, Vol. 19, № 12, 
2010, pp. 3243-3254. 

16. Azizi, A., Elkourd, K., Azizi, Z. Robust Active Contour Model Guided by Local Binary Pat-
tern Stopping Function // Cybernetics and Information Technologies, Vol. 17, № 4, 2017, 
pp. 165-182. 

17. Chan, T. F., Vese, L. A. Active contours without edges // IEEE Transactions on image 
processing, Vol. 10, № 2, 2001, pp. 266-277. 

18. Li, C., Kao, C. Y., Gore, J. C.,  Ding, Z. Minimization of region-scalable fitting energy for 
image segmentation // IEEE transactions on image processing, Vol. 17, № 10, 2008, pp. 
1940-1949. 



19. Zhang, K., Zhang, L., Lam, K. M., Zhang, D. A level set approach to image segmentation 
with intensity inhomogeneity // IEEE transactions on cybernetics, Vol. 46, № 2, 2015, 
pp. 546-557. 

20. Azizi, A., Elkourd, K. Fast Region-based Active Contour Model Driven by Local Signed 
Pressure Force // ELCVIA: electronic letters on computer vision and image analysis, Vol. 
15, № 1, 2016, pp. 1-13. 

21. Xu, H., Liu, T., Wang, G. Hybrid geodesic region-based active contours for image seg-
mentation // Computers & Electrical Engineering, Vol. 40, № 3, 2014, pp. 858-869. 

22. Abdallah, A., Kaouther, E. A Hybrid Active Contour without Re-initialization // In Pro-
ceedings of the International Conference on Intelligent Information Processing, Security 
and Advanced Communication, p. 45, 2015, ACM. 

23. Ding, K., Xiao, L., Weng, G. Active contours driven by region-scalable fitting and opti-
mized Laplacian of Gaussian energy for image segmentation // Signal Processing, Vol. 
134, 2017, pp. 224-233. 

24. Azizi, A. Détection du Contour Actif de Différentes Images. // Doctoral dissertation, 
Université Mohamed Khider-Biskra, 2017. 

25. Ronneberger, O., Fischer, P., Brox, T. U-net: Convolutional networks for biomedical im-
age segmentation // In International Conference on Medical image computing and com-
puter-assisted intervention, 2015, pp. 234-241. Springer, Cham. 

26. Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J. Unified perceptual parsing for scene under-
standing // In Proceedings of the European Conference on Computer Vision (ECCV), 
2018, pp. 418-434. 

27. Sun, K., Zhao, Y., Jiang, B., Cheng, T., Xiao, B., Liu, D., Wang, J. High-resolution repre-
sentations for labeling pixels and regions // arXiv preprint, 2019, arXiv:1904.04514. 

28. Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., Terzopoulos, D. Image 
segmentation using deep learning: A survey // arXiv preprint, 2020,  arXiv:2001.05566. 

29. Liu, H., Wang, W., Li, X., Li, F. Defect segmentation of fiber splicing on an industrial ro-
bot system using GMM and graph cut // In 2012 IEEE International Conference on Ro-
botics and Biomimetics (ROBIO), 2012, pp. 1968-1972. IEEE. 

30. Abdoli, M., Sarikhani, H., Ghanbari, M., Brault, P. Gaussian mixture model-based con-
trast enhancement // IET image processing, Vol. 9, № 7, 2015, pp. 569-577. 

31. Teutsch, M., Beyerer, J. Noise resistant gradient calculation and edge detection using lo-
cal binary patterns // In Asian Conference on Computer Vision, 2012, pp. 1-14,  Springer, 
Berlin, Heidelberg. 

32. Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu, X.,  Pietikäinen, M. Deep learn-
ing for generic object detection: A survey // International journal of computer vision, Vol. 
128 № 2, 2020, pp. 261-318. 

33. Long, J., Shelhamer, E., Darrell, T. Fully convolutional networks for semantic segmenta-
tion // In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2015, pp. 3431-3440. 

34. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Sánchez, 
C. I. A survey on deep learning in medical image analysis // Medical image analysis, Vol. 
42, 2017, pp. 60-88. 

35. Mohanty, K. K., Gellaboina, M. K. Enhancement of low light image based on Gaussian 
mixture modeling // In 2010 2nd European Workshop on Visual Information Processing 
(EUVIP), 2010, pp. 232-236, IEEE. 

36. Boykov, Y. Y., Jolly, M. P. Interactive graph cuts for optimal boundary & region segmen-
tation of objects in ND images // In Proceedings eighth IEEE international conference on 
computer vision (ICCV 2001), 2001, Vol. 1, pp. 105-112. IEEE. 

37. Fathi, M., Hiltner, J. A new fuzzy based flood-fill algorithm for 3D NMR brain segmenta-
tion // In IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on 
Systems, Man, and Cybernetics (Cat. No. 99CH37028), Vol. 4, 1999, pp. 881-885, IEEE. 



38. Ojala, T., Pietikäinen, M., Mäenpää, T. Multiresolution gray-scale and rotation invariant 
texture classification with local binary patterns //  IEEE Transactions on Pattern Analysis 
& Machine Intelligence, Vol. 7, 2002, pp. 971-987. 

39. Ammar, C., Mebarka, B., Abdelmalik, O., Salah, B. Evaluation of Histograms Local Fea-
tures and Dimensionality Reduction for 3D Face Verification // JIPS (Journal of Infor-
mation Processing Systems), Vol. 12, № 3, 2016, pp. 468-488. 

40. Mukherjee, S., Acton, S. T. Region based segmentation in presence of intensity inhomo-
geneity using legendre polynomials //  IEEE Signal Processing Letters, Vol. 22, № 3, 
2014, pp. 298-302. 


